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Abstract—Hybrid numerical techniques in time domain offer
computationally efficient means of analysis of certain classes of
microwave structures. One of the recently proposed techniques
combines the finite-difference time-domain (FDTD) method with
the eigenfunction expansion. This method has proven to be
very efficient in the analysis of properties of complex planar
transmission lines and waveguide discontinuity problems. To
achieve full functionality, in particular in the context of the
discontinuity analysis, this method has to be complemented by
a suitable high-performance absorbing boundary condition. In
this letter, we examine a modified Berenger’s perfectly matched
layer (PML). Tests in a waveguide indicate that low reflections
can be obtained in a wide frequency range with few layers of the
absorbing medium with a properly selected conductivity profile.

I. INTRODUCTION

A HYBRID finite-difference time-domain (FDTD) eigen-
function expansion technique utilizes a standard FDTD

mesh in the areas of structure inhomogeneouity and expansion
of fields into a known set of modes in transversely homoge-
neous regions of the structure [1]–[5]. For example, in the case
of a discontinuity in a rectangular waveguide, the discontinuity
area is analyzed using the FDTD, and in the remaining areas
the fields are represented by only a few orthogonal modes. This
provides substantial savings, both in the required computer
storage and in the CPU time, at the expense of narrowing
the class of problems that can be successfully simulated. The
acceleration factor in the computations of transmission line
properties can be as high as 40 [1]–[3], as the discretization
is performed in one rather than two dimensions. Similarly,
in the computations of waveguide discontinuity problems,
the discretization is reduced from two dimensions (2-D) to
one-dimensional (1-D) or from three-dimensional (3-D) to 1-
D, depending on the nature of the discontinuity and the set
of modes that can be excited, as the structure is divided
into slices with modes representing the unknown fields in
each slice. If one could absorb higher-order modes close to
discontinuity, the speed of computation would further increase.
Also, in many cases, at least one boundary of the structure
where the modal expansion is used have to be terminated
with a reflectionless load. One efficient and fast solution to
this problem, particularly if the evanescent modes has to be
absorbed, is to use digital filters based on the Laguerre [6] or
even better Kautz [7] polynomials. Another option, useful for
guided waves, is the recently introduced Berenger’s perfectly
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matched layer (PML) [8], which offers excellent absorbing
performance for the classical FDTD and FEM methods. The
formulation and performance of the PML modified for modal
expansion are explored in this letter.

II. FORMULATION

To terminate the open spaces in the hybrid scheme, suitable
boundary conditions that are formulated for modes rather than
fields as in FDTD are required. Berenger’s PML medium
seems particularly well suited, as it provides excellent ab-
sorption for guided waves. Since the field dependence in the
transverse direction (in each slice) is known (modal solution),
Maxwell’s equations governing the field behavior become
substantially simplified. Accordingly, Berenger’s split field
formulas reduce to (only four representative equations are
given; the remaining having analogical form)

(1)

(2)

(3)

(4)

where and are cross-sectional dimensions of
the waveguide.

Note that the split field components are combined on the
right-hand side of the above equations, e.g.,

. Also, and amplitudes are the actual field ampli-
tudes multiplied by to account for 90 phase shift and
allow for real arithmetics.

The field update formulae can be derived next. As an
example, equations for and are listed below.
It is assumed that .

(5)

(6)

where denotes location alongaxis (as in the standard FDTD
notation) and denotes mode number.

When exponential differencing is used coefficientstake
the following form:

(7)

(8)
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Fig. 1. Effect of signal windowing. PML (6 p1.7–60 dB).

Fig. 2. PML with various power profiles.

whereas for central differencing they are

(9)

(10)

Since typically very few modes have to be considered at
the PML interface, PML computations become very efficient.
Even PML’s with many layers can be used and
computed at a negligible fraction of the overall computational
expense.

III. N UMERICAL RESULTS

Performance of the modal PML was tested in a rectangular
waveguide 22.86 mm 10.16 mm excited in the fundamental
mode. The excitation was with a Gaussian pulse with a 50-
GHz bandwidth. The space and time steps were, respectively,
0.5 mm and 1.6 ps. The reflection coefficients were evaluated
at the PML interface.

(a)

(b)

Fig. 3. Response of PML with power profilep = 1:7 and various number
of layersN and normal reflectionRo.

Fig. 1 shows the reflection coefficient for three cases with
and without a windowing algorithm applied prior to the spec-
tral analysis. In the time-domain response of the PML, there
are slowly decaying oscillations whose periods corresponds to
the cutoff frequency. This is in agreement with the earlier
observations [9] that evanescent and cutoff waves are not
absorbed by PML media used here. As the cutoff frequency
oscillations fade slowly, their abrupt truncation triggers os-
cillations visible in the spectrum of the reflected signal. The
effect of the truncation is prominent in Fig. 1 for both short
and long nonwindowed cases. This phenomenon contaminates
the results for the computed reflection coefficient. Therefore,
in the further analysis, we use the conventional Blackmann
window to remove it.

Fig. 2 illustrates the behavior of the reflection coefficient
as a function of frequency for a PML with a small number of
layers for various values of the PML power profile defined as
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(a)

(b)

Fig. 4. Response of PML with various geometrical profiles with (a) normal
reflectionRo = �40 dB, N = 4; (b) normal reflectionRo = �60 dB,
N = 8.

Several observations can be made. Large reflection exists
below and at the cutoff frequency [9]. The optimum per-
formance in the normal waveguide operation bandwidth and
above occurs for , with typically more than 10-
dB improvement over linear or parabolic profiles. As the
frequency increases, this effect disappears and the computed
reflection coeffcient tends to the theoretical value. The
superior performance for this profile appears to be independent
of the number of layers and the maximum reflection at the end
of the PML. This observation is based on our investigations
for up to and up to 100 dB. The frequency behavior
of the reflection coefficient for various and is illustrated
in Fig. 3 for the optimal . Some improvement in the
performance can be noticed with an increase in the number of
layers and lower reflections at the PML termination, e.g., for

and dB.
Fig. 4 shows the reflection characteristics for two represen-

tative sets of and for PML medium with geometrical

profile defined as

Profiles with other and were also investigated and
produced similar results with the overall best performance for

and somewhat better performance of PML with
between 3 and 5 at higher frequencies. A comparison of the
modal PML with the two conductivity profiles indicates on
the overall superior performance of the power profile with

(Figs. 2 and 3). However, geometrical profile can
provide smaller reflections at very low frequencies.

Our additional tests also have showed that there is no signif-
icant difference in the behavior of the modal PML formulated
with central or exponential differencing. This property of the
modal FDTD is the same as in the earlier Veihl and Mittra
report regarding the PML in the FDTD method [10].

IV. CONCLUSION

A modified PML provides a high-performance termination
of open spaces in the hybrid FDTD modal analysis. Appli-
cation of the windowing technique allows for use of much
shorter time series. Our tests also showed that there is no per-
ceivable difference between results obtained with central and
exponential differencing of PML equations. We have examined
both geometrical and power profiles of PML conductivities.
For the configuration analyzed the following observations can
be made. The power profile with the coefficient of 1.7 gives
the optimal overall performance. Both profiles behave poorly
below cutoff, but the geometrical profile shows significant
improvement at very low frequencies. The PML was tested
in a rectangular waveguide, but it is expected that the modal
PML will work well in homogeneous waveguides of other
cross sections.
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