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Abstract—Hybrid numerical techniques in time domain offer matched layer (PML) [8], which offers excellent absorbing
computationally efficient means of analysis of certain classes of performance for the classical FDTD and FEM methods. The

microwave structures. One of the recently proposed techniques formulation and performance of the PML modified for modal
combines the finite-difference time-domain (FDTD) method with expansion are explored in this letter

the eigenfunction expansion. This method has proven to be
very efficient in the analysis of properties of complex planar
transmission lines and waveguide discontinuity problems. To Il. FORMULATION

achieve full functionality, in particular in the context of the . . . .
discontinuity analysis, tk):is mepthod has to be complemented by To termlnate_the open spaces in the hybrid scheme, suitable
a suitable high-performance absorbing boundary condition. In poundary pondltlons that are formulated for modes rather_than
this letter, we examine a modified Berenger’s perfectly matched fields as in FDTD are required. Berenger's PML medium
layer (PML). Tests in a waveguide indicate that low reflections seems particularly well suited, as it provides excellent ab-
can be obtained in a wide frequency range with few layers of the sorption for guided waves. Since the field dependence in the
absorbing medium with a properly selected conductivity profile. transverse direction (in each slice) is known (modal solution),
Maxwell's equations governing the field behavior become
l. INTRODUCTION substantially simplified. Accordingly, Berenger’s split field
HYBRID finite-difference time-domain (FDTD) eigen-formulas reduce to (only four representative equations are
function expansion technique utilizes a standard FDT@Vven; the remaining having analogical form)
mesh in the areas of structure inhomogeneouity and expansion

of fields into a known set of modes in transversely homoge- NOinx +0'H., =—-K"E, 1)
neous regions of the structure [1]-[5]. For example, in the case dt
of a discontinuity in a rectangular waveguide, the discontinuity NOinz +0*H,. = 92E, )
area is analyzed using the FDTD, and in the remaining areas dt
the f[elds are reprelsented. by only a fgw orthogongl modes. This 60£EM +0.E,. = —0z2H, 3)
provides substantial savings, both in the required computer Ccllt
storage and in the CPU time, at the expense of narrowing S e E. = KmH. 4
the class of problems that can be successfully simulated. The g Pvm F Oabys v @

acceleration factor in the computations of transmission line e _ ) )

properties can be as high as 40 [1]-[3], as the discretizatiyihere ;" = 5+ anda, b are cross-sectional dimensions of

is performed in one rather than two dimensions. Similarii’¢ Waveguide. _

in the computations of waveguide discontinuity problems, NOt€ that the split field components are combined on the

the discretization is reduced from two dimensions (2-D) tight-nand side of the above equations, e, = (Ey. +

one-dimensional (1-D) or from three-dimensional (3-D) to 1£v:)- Als0, E. and 1, amplitudes are the actual field ampli-

D, depending on the nature of the discontinuity and the ﬁé!'fes multiplied by(—j) to account for 99 phase shift and

of modes that can be excited, as the structure is divig@Jow for real arithmetics. _

into slices with modes representing the unknown fields in 1€ field update formilé;lg can bejrldenve_d next. As an

each slice. If one could absorb higher-order modes close S§MPle. equations fngz  and Eg;T are listed below.

discontinuity, the speed of computation would further increass.'S assumed that; = oy = oy = 0z = 0.

Also, in many cases, at least one boundary of the structure . L 05,

where the modal expansion is used have to be terminated HZ 0 (i m) = ag HiZ7 0 (i, m)

with a reflectionless load. One efficient and fast solution to +aj. [Ep(i+1,m) — Ep(i,m)]  (5)

this problem, particularly if the evanescent modes has to be + 3

absorbed, is to use digital filters based on the Laguerre [6] or  Eya (i,m) = Ey,(i,m) + Kw(m)e—H?JrO'o(i,m) (6)

even better Kautz [7] polynomials. Another option, useful for 0

guided waves, is the recently introduced Berenger’s perfeciihere; denotes location alongaxis (as in the standard FDTD
notation) andm denotes mode number.
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Fig. 2. PML with various power profiles.
Fig. 3. Response of PML with power profile= 1.7 and various number
whereas for central differencing they are of layers NV and normal refiectioriz,.
] — g*dt Fig. 1 shows the reflection coefficient for three cases with
ap, = 7‘25;0 (9) and without a windowing algorithm applied prior to the spec-
I+oiq,- tral analysis. In the time-domain response of the PML, there
9 1 dt 1 0 are slowly decaying oscillations whose periods corresponds to
Xpz = %@ 1+ ordt’ (10)  the cutoff frequency. This is in agreement with the earlier
# Zpa observations [9] that evanescent and cutoff waves are not

Since typically very few modes have to be considered gpsorbed by PML media used here. As the cutoff frequency
the PML interface, PML computations become very efficienpscillations fade slowly, their abrupt truncation triggers os-
Even PML's with many layer§ N > 10) can be used and cillations visible in the spectrum of the reflected signal. The

computed at a negligible fraction of the overall computation&ff€ct Of the truncation is prominent in Fig. 1 for both short
expense. and long nonwindowed cases. This phenomenon contaminates

the results for the computed reflection coefficient. Therefore,

in the further analysis, we use the conventional Blackmann
III. NUMERICAL RESULTS . :
window to remove it.

Performance of the modal PML was tested in a rectangularrig. 2 illustrates the behavior of the reflection coefficient
waveguide 22.86 mmx 10.16 mm excited in the fundamentalas a function of frequency for a PML with a small number of

mode. The excitation was with a Gaussian pulse with a 5@yers for varioug values of the PML power profile defined as
GHz bandwidth. The space and time steps were, respectively,

0.5 mm and 1.6 ps. The reflection coefficients were evaluated o(x) =0 (i)p
at the PML interface. i T \dz
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profile defined as

" o(z) = 0,(g7).
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Profiles with otherN and R, were also investigated and
produced similar results with the overall best performance for
g = 1.6 and somewhat better performance of PML with
between 3 and 5 at higher frequencies. A comparison of the
modal PML with the two conductivity profiles indicates on
the overall superior performance of the power profile with
p = 1.7 (Figs. 2 and 3). However, geometrical profile can
provide smaller reflections at very low frequencies.

Our additional tests also have showed that there is no signif-
icant difference in the behavior of the modal PML formulated
with central or exponential differencing. This property of the
modal FDTD is the same as in the earlier Veihl and Mittra
report regarding the PML in the FDTD method [10].
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IV. CONCLUSION

A modified PML provides a high-performance termination
of open spaces in the hybrid FDTD modal analysis. Appli-
cation of the windowing technique allows for use of much
shorter time series. Our tests also showed that there is no per-
ceivable difference between results obtained with central and
exponential differencing of PML equations. We have examined
both geometrical and power profiles of PML conductivities.
For the configuration analyzed the following observations can
be made. The power profile with the coefficient of 1.7 gives
the optimal overall performance. Both profiles behave poorly
below cutoff, but the geometrical profile shows significant
improvement at very low frequencies. The PML was tested
in a rectangular waveguide, but it is expected that the modal
PML will work well in homogeneous waveguides of other
Cross sections.
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